Uniwersytet Przyrodniczy we Wrocławiu

Określanie parametrów przepływu laminarnego plastyczno-lepkich zaczynów cementowych aproksymowanych modelem Herschela-Bulkley'a

Determination of the parameters of laminar flow of viscoplastic cement pastes approximated with use of the Herschel-Bulkley model

1. Wstęp

Rewitalizacja licznych objektów budowlanych wymaga bardzo często wyboru metod naprawy uszkodzonych elementów, bez widocznej ale możliwej ingerencji zewnętrznej. Dotyczy to w szczególności obiektów chronionych przez konserwatora zabytków, wymagających przywrócenia dawnej i często zmodyfikowanej funkcjonalności konstrukcji. Jedną z metod dokonania napraw tych budowli, najmniej ekspansyjna i skuteczna, jest iniekcja ciśnieniowa materiałów mineralnych na bazie cementu. Ta metoda przywrócenia dobrego stanu budowli, dotyczący trwałości, wytrzymałości i szczelności, która umożliwia jego osiągnięcie bez zmian dotychczasowego układu konstrukcji i jej zarysu zewnętrznego. Szczególnym przypadkiem wykorzystania tej metody jest wypełnianie pęknięć, rys i ubytków w konstrukcji budowlanej. Przykładami innych zastosowań iniekcji ciśnieniowej mogą być: zabezpieczania kanałów cięgien sprężających w konstrukcjach kablobetonowych, wzmocnienia ośrodków gruntowych, mocowania kotew gruntowych, monolityzacja styków elementów prefabrykowanych (Król, Szerafin, 2009), a także cementowania otworów wiertniczych (Bensted, Smith, 2012, Stryczek i inni 2010). Stosowanie iniekcji ciśnieniowej wymaga nie tylko znajomości właściwości fizycznych, chemicznych i reologicznych mieszaniny iniekcyjnej, ale również niezbędnej, prawidłowo zaprojektowanej, instalacji hydraulicznej do jej wykonania. Znajomość właściwości mieszaniny i parametrów hydrotransportu umożliwia dokonanie analizy pracy instalacji w celu zabezpieczenia właściwych warunków iniekcji.

2. Cel badań

Niezbędna, w projektowaniu ciśnieniowej instalacji iniekcyjnej, jest znajomość współczynnika oporu rurociągu λ , koniecznego do określenia strat hydraulicznych na długości przewodu ze znanego wzoru Darcy-Weisbacha (Govier, Aziz 1972) i ustalenia warunków roboczych (zasięgu tłoczenia, ciśnienia, prędkości dopuszczalnych) projektowanej instalacji. Autorzy, na podstawie

1. Introduction

The revitalisation of numerous civil structures very often requires choosing the method of repair of the damaged parts, without any visible (but possible) external intervention. This refers in particular to objects protected by the Conservator of Monuments, which require the restoration of former, often modified functionality of the structure. One of the least expansive and most efficient method of repairing such constructions is the method of pressure injection of cement-based mineral materials. This manner of restoring the appropriate parameters of the construction, concerning the stability, strength and impermeability, can be achieved without introducing any changes to the existing structure layout and its external outline. Specific instances of the application of the said method are all types of filling breaks, cracks and cavities in the civil structure. Some other examples of application of pressure injection may include: protecting the ducts of tensioning strands in post tensioned concrete structures, reinforcement of soil media, anchoring of ground anchors, monolithisation of joints between prefabricated elements (Król, Szefarin, 2009) and oil-well cementing (Bensted, Smith, 2012, Stryczek et al. 2010). The application of pressurized injection requires not only the knowledge of physical, chemical and rheological parameters of the injection mix, but also an indispensable, correctly designed hydraulic installation for carrying out the injection. The knowledge of the properties of the mixture and of the parameters of hydraulic transport allows to analyse the operation of the installation in order to ensure the appropriate injection parameters.

2. Objective of the study

For the purposes of designing a pressure injection installation it is necessary to know the Darcy friction factor λ of the pipeline, which is required for the calculation of head loss on the length of the pipe, basing on the well known Darcy-Weisbach formula (Govier, 1972) and for the determination of operational parameters danych literaturowych, przeprowadzili porównanie istniejących metod określenia współczynnika λ w laminarnej strefie przepływu dla zaczynu cementowego z cementu CEM I 42,5 R, przy różnych współczynnikach wodno-cementowych W/C oraz przedstawili możliwości ich praktycznego wykorzystania, poprzez określenie krytycznej liczby Reynoldsa Re_{H,cr} oraz dopuszczalnych prędkości eksploatacyjnych $\nu \leq v_{cr}$.

3. Charakterystyka badanego materiału

Badania przeprowadzono na zaczynach cementowych z cementu portlandzkiego CEM I 42,5 R. Podstawowe właściwości fizyczne badanego cementu zestawiono w tablicy 1, natomiast jego skład chemiczny podano w tablicy 2.

3.1. Badania wiskozymetryczne

Laboratoryjne pomiary reologiczne zaczynu cementowego wykonano przy użyciu wiskozymetru rotacyjnego Haake VT 550 z układem pomiarowym MV2 P, pozwalającym na określenie naprężenia stycznego r w funkcji pseudoprędkości deformacji dla powierzchni obrotowego cylindra wewnetrznego. Układ ten wyposażony jest w karbowany cylinder wewnętrzny i zewnętrzny, eliminujący zjawisko poślizgu, ze szczeliną pomiarową o szerokości 2,6 mm. Pomiary przeprowadzono metodą podaną w pracy (Kempiński, Świerzko, 2010). Współczynnik wodno-cementowy W/C, decydujący o konsystencji, zmieniano w przedziale 0,36 -0,60 co odpowiada zmianie koncentracji masowej C_s w przedziale 0,625–0,735, oraz koncentracji objętościowej C, w przedziale 0,350-0,473. Całość badań wiskozymetrycznych wykonano w stałej temperaturze t = 20°C, wykorzystując termostat Caron 2050W. Czas trwania jednej serii pomiarowej wnosił 250 s. Pomiar odbywał się w okresie indukcji, w której przebieg reakcji chemicznych ulega spowolnieniu, a cechy reologiczne zaczynu są praktycznie stałe (Kilian, 2008). Przy założeniu stałości temperatury i ciśnienia, zachowaniu stałych warunków przygotowania i pomiarów, aby pomiary wiskozymetryczne były reostabilne. Otrzymane pseudokrzywe płynięcia zaczynów cementowych wykazują próg płynięcia

Tablica 2 / Table 2

SKŁAD CHEMICZNY CEMENTU CEM I 42,5 R

CHEMICAL COMPOSITION OF CEMENT CEM I 42.5 R

Składnik / Element	Zawartość / Content, %
Са	48.20
0	29.27
Si	9.12
С	3.95
Fe	2.66
S	2.62
Al	2.29
к	1.46
Mg	0.40
Na	0.03

(extent of delivery, operational pressure, acceptable velocities) of the designed installation.

Basing on existing literature of the subject, the authors compare the existing method of determination of the λ parameter in the laminar flow zone for paste of cement CEM I 42.5 R, at various water to cement ratios W/C, and present the possibilities of their practical application, by means of the determination of the critical Reynolds number Re_{Hcr}along with the acceptable operational velocities $v \leq v_{cr}$.

3. Characteristics of the analysed material

The tests were carried out on cement pastes prepared from Portland cement CEM I 42.5 R. The basic physical parameters of the analysed cement are listed in Table 1, while the chemical composition of the cement is presented in Table 2.

Tablica 1 / Table 1

PODSTAWOWE WŁAŚCIWOŚCI FIZYCZNE CEMENTU CEM I 42,5 R

BASIC PHYSICAL PARAMETERS OF CEMENT CEM I 42.5 R

Właściwość / Parameter	Wartość / Value
Wytrzymałość na ściskanie	
Compressive strength	
Po 2 dniach/After 2 days, MPa	31.1
Po 7 dniach/After 7 days, MPa	50.9
Po 28 dniach/After 28 days, MPa	61.4
Wytrzymałość na zginanie	
Flexural strength	
Po 2 dniach/After 2 days, MPa	5.4
Po 7 dniach/After 7 days, MPa	7.7
Po 28 dniach/After 28 days, MPa	8.8
Właściwa ilość wody	
Water demand, %	30
Czas początku wiązania	
Initial setting time, min	115
Czas końca wiązania	
Final setting time, min	210
Gęstość właściwa	
Specific density, kg/m ³	3120

3.1. Viscometric tests

Laboratory rheological tests of cement paste were performed with the Haake VT 550 rotational viscometer, coupled with the MV2 P system of measuring cylinders. The test allowed determination of tangential stress τ in relation to pseudovelocity of deformation on surface of the rotating inner cylinder. The system is equipped with a corrugated internal and external cylinder that eliminate the phenomenon of wall slip, with a 2.6 mm wide measurement interspace. Measurements were conducted in compliance with the methodology presented in the study (Kempiński, Świerzko, 2010). The water to cement ratio W/C, defining the consistency of the mixture, was changed within the range 0.36 - 0.60, which corresponds to the change in the mass concentration Cs in the range 0.625 - 0.735 and volume concentration Cv in the range $τ_0$ oraz zmienną lepkość plastyczną $η_{\rm pl}$, co jest charakterystyczne dla ciał o zachowaniu lepko-plastycznym (rysunek 1). Pseudokrzywe płynięcia $τ(\dot{\gamma}_p)$ przekształcono w rzeczywiste krzywe płynięcia (rysunek 2), metodą Kriegera, Marona i Elroda (Krieger i inni, 1953), zaproponowaną przez Czabana (Czaban 1987). Do aproksymacji krzywych płynięcia zastosowano trójparametrowy, uogólniony model Herschela-Bulkley'a [1].

 $\tau = \tau_0 + k \dot{\gamma}^n \text{ dla } t > t_0$ $\dot{\gamma} = 0 \text{ dla } t \le t_0$ [1]

0.350 - 0.473. All viscometric tests were carried out at a fixed temperature of measurement t = 20°C, with use of the thermostat Caron 2050W. The duration of one measurement session was 250 s. Measurements were taken in the induction period, in which the chemical reactions are slow and the rheological parameters of the paste remain practically constant (Kilian, 2008). Basing on the assumption that temperature and pressure are constant as well as the conditions of preparation and examination of the samples it can be assumed that the viscometric measurements were stable. The obtained pseudo-curves of flow of cement pastes are characterised by a yield stress τ_0 and variable plastic viscosity η_{pl} ,

Rys. 1. Pseudokrzywe płynięcia zaczynów cementowych

Fig. 1. Pseudo-curves of flow of cement pastes

Rys. 2. Rzeczywiste krzywe płynięcia

Fig. 2. Real curves of flow

152 CWB-3/2015

Określone parametry reologiczne modelu $\tau_{0, k}$, *n* dla zmiennego współczynnika W/C zestawiono w tablicy 3.

Zmiany parametrów reologicznych w funkcji współczynnika W/C przedstawiają rysunki 3-5.

Parametry reologiczne τ_{o} , *k* maleją wyraźnie ze wzrostem współczynnika W/C, natomiast liczba strukturalna *n* nie wykazuje wyraźnego uzależnienia. which is characteristic for bodies of a viscoplastic behaviour (Fig. 1). The pseudo-curves of flow τ (G_p) were transformed on the real curves of flow (Fig. 2), according to the method of Krieger, Maron and Elrod (Krieger et al., 1953), suggested by Czaban (Czaban 1987). The approximation of curves of flow was carried out with use of the tri-parametric, generalized Herschel-Bulkley model [1].

$$\tau = \tau_0 + k\dot{\gamma}^n \text{ for } t > t_0$$

$$\dot{\gamma} = 0 \quad \text{for } t \le t_0$$
[1]

The determined rheological parameters of the model $\tau_{0, k}$, and *n* for variable water to cement ratios W/C are presented in Table 3.

Rys. 3. Zależność progu płynięcia To od wskaźnika W/C

Fig. 3. The dependence of the yield stress τ_0 on the water to cement ratio W/C

Rys. 4. Zależność współczynnika sztywności k od wskaźnika W/C

Fig. 4. The dependence of the consistency index k on the water to cement ratio W/C

Fig. 5. The dependence of flow behaviour index n on the water to cement ratio W/C

4. Określenie współczynnika oporu rurociągu λ

Kempiński (2001) oparł określenie współczynnika oporu rurociągu λ na bezwymiarowym kryterium λ (*Re,gen*), które dla laminarnej strefy przepływu, zgodnie z wzorem Poiseuille'a, jak dla cieczy newtonowskiej (Govier, 1972), wynosi:

$$\lambda = \frac{64}{Re, gen}$$
[2]

Uogólnioną liczbę Reynoldsa określa wzór:

$$Re, gen = \frac{8\rho v^2}{\tau_w}$$
[3]

Kempiński (2001) podał wzór na określenie naprężeń stycznych na ściance rurociągu τ_{w_i} dla modelu Herschela-Bulkle'a, w postaci:

$$\tau_{w} = \frac{(2v)^{n}k}{D^{n} \left| \frac{n}{n+1} \left(1 - \frac{\tau_{0}}{\tau_{w}} \right)^{\frac{n+1}{n}} \left\{ 1 - \frac{2n}{3n+1} \left(1 - \frac{\tau_{0}}{\tau_{w}} \right) \left[1 + \frac{n}{2n+1} \cdot \frac{\tau_{0}}{\tau_{w}} \right] \right\} \right|^{n}}$$
[4]

oraz uogólnioną liczbę Reynoldsa Re_{H.gen} w postaci:

$$Re_{H,gen} = \frac{8\nu^{(2-n)}D^{n}\rho}{2^{n}k} \left| \frac{n}{n+1} \left(1 - \frac{\tau_{0}}{\tau_{w}} \right)^{\frac{n+1}{n}} \left\{ 1 - \frac{2n}{3n+1} \left(1 - \frac{\tau_{0}}{\tau_{w}} \right) \left[1 + \frac{n}{2n+1} \cdot \frac{\tau_{0}}{\tau_{w}} \right] \right\} \right|^{n}$$
[5]

Madlener wraz ze współautorami (Madlener i in., 2009) zaproponował ustalenie współczynnika strat liniowych również w oparciu Tablica 3 / Table 3

PARAMETRY MODELU HERSCHELA–BULKLEY'A WYZNACZONE NA PODSTAWIE RZECZYWISTYCH KRZYWYCH PŁYNIĘCIA ZACZYNÓW CEMENTOWYCH

PARAMETERS OF THE HERSCHEL- BULKLEY MODEL, DETERMINED BASING ON THE REAL CURVES OF FLOW OF CEMENT PASTES

Water to cement ratio W/C	τ _{ο,} Ра	<i>K</i> , Pas¹	n
0.36	44.9	1.8154	0.7466
0.40	30.3	1.9731	0.7033
0.45	18.9	1.1510	0.7414
0.50	11.0	1.3333	0.6313
0.55	7.5	0.5526	0.7132
0.60	5.2	0.4904	0.6715

The variability of rheological parameters as a function of the water to cement ratio W/C are presented in Figs. 3, 4 and 5.

The rheological parameters τ_0 , *k* decrease noticeably along with the increase in the water to cement ratio W/C, while the flow behaviour index *n* does not show any clear dependency.

4. Determination of the Darcy friction factor λ of the pipeline

Kempiński (2001) based the determination of the Darcy friction factor λ of the pipeline on the non-dimensional criterion $\lambda(Re,gen)$, which, according to the Poiseuille formula is similar for laminar flow as in the case of Newtonian fluids (Govier, 1972), and equals:

$$\lambda = \frac{64}{Re,gen}$$
[2]

o równanie [2] oraz zależność [6], opisującą uogólnioną liczbę Reynoldsa dla modelu Hersschela–Bulkley'a

$$Re_{H,gen} = \frac{\rho v^{2-n} D^n}{\left(\frac{\tau_0}{8}\right) \left(\frac{D}{v}\right)^n + k \left[\frac{(3m+1)}{4m}\right]^n 8^{n-1}}$$
[6]

gdzie:

$$m = \frac{nk\left(\frac{\vartheta v}{D}\right)^n}{\tau_0 + k\left(\frac{\vartheta v}{D}\right)^n}$$

Czaban (1987) opiera określenie λ na bezwymiarowym kryterium λ (*Re*_H, *He*, β), w którym liczba Reynoldsa *Re*_H określona jest wzorem:

$$Re_{H} = \frac{8\rho D^{n} v^{2-n}}{k \left(6 + \frac{2}{n}\right)^{n}}$$
[7]

liczba Hedströma He:

$$He = \frac{\tau_0}{\rho v^2} Re_{H}^2$$
 [8]

a parametr
$$\beta$$
 wynosi: $\beta = 8 \frac{He}{Re_v^2}$

Współczynnik oporu rurociągu obliczamy z wzoru:

$$\lambda = \frac{64}{Re_{H}} \frac{1}{\left(1 - \frac{\beta}{\lambda}\right)^{n+1}} \frac{1}{\left[1 + \frac{2n}{1 + 2n}\frac{\beta}{\lambda} + \frac{2n^{2}}{(1 + n)(1 + 2n)}\left(\frac{\beta}{\lambda}\right)^{2}\right]^{n}}$$
[10]

Eckstädt (1984) natomiast oparl określenie λ na bezwymiarowym kryterium $\lambda(Re_n, A)$, w którym liczba Reynoldsa Re_n określona jest wzorem:

$$Re_n = \frac{v^{2-n}D^n}{k}\rho$$
 [11]

a parametr A wynosi:

$$A = \frac{\tau_0}{v^2 \rho}$$
[12]

Obliczenie współczynnika λ umożliwia formuła:

$$\frac{1}{\left(\frac{\lambda R e_n}{8} - R e_n A\right)^{1/n}} = \frac{1}{\left(\frac{\lambda R e_n}{8} - R e_n A\right)^{1/n}} = \frac{1}{\left(\frac{3}{6}n + 2\right)^2} - \frac{2n}{\left(\frac{3}{3}n + 1\right)\left(\frac{2}{2}n + 1\right)} \left(\frac{2n}{2} + 1\right)^2} + \frac{1}{\left(\frac{4}{3}n + 1\right)\left(\frac{2}{2}n + 1\right)\left(\frac{2}{2}n + 1\right)} \left(\frac{4}{\lambda}\right)^2}{\left(\frac{3}{3}n + 1\right)\left(\frac{2}{2}n + 1\right)\left(n + 1\right)} \left(\frac{4}{\lambda}\right)^3}$$
[13]

The generalized Reynolds number is determined by the formula:

$$Re, gen = \frac{8\rho v^2}{\tau_w}$$
[3]

Kempiński (2001) presented the formula for the determination of tangent shear stress on the surface of the pipe τ_w for the Herschel-Bulkley model in the form:

$$\tau_{w} = \frac{(2v)^{n}k}{D^{n} \left| \frac{n}{n+1} \left(1 - \frac{\tau_{0}}{\tau_{w}} \right)^{\frac{n+1}{n}} \left\{ 1 - \frac{2n}{3n+1} \left(1 - \frac{\tau_{0}}{\tau_{w}} \right) \left[1 + \frac{n}{2n+1} \cdot \frac{\tau_{0}}{\tau_{w}} \right] \right\} \right|^{n}}$$
[4]

and the generalized Reynolds number Re_{H,gen} in the form:

$$Re_{H,gen} = \frac{8v^{(2-n)}D^{n}\rho}{2^{n}k} \left| \frac{n}{n+1} \left(1 - \frac{\tau_{0}}{\tau_{w}} \right)^{\frac{n+1}{n}} \left\{ 1 - \frac{2n}{3n+1} \left(1 - \frac{\tau_{0}}{\tau_{w}} \right) \left[1 + \frac{n}{2n+1} \cdot \frac{\tau_{0}}{\tau_{w}} \right] \right\} \right|^{n}$$
[5]

Madlener and co-authors (Madlener et al., 2009) proposed the determination of the Darcy friction factor also basing on the equation [2] and the relation [6], describing the generalized Reynolds number for the Herschel- Bulkley model

$$Re_{H,gen} = \frac{\rho v^{2-n} D^n}{\left(\frac{\tau_0}{8}\right) \left(\frac{D}{v}\right)^n + k \left[\frac{(3m+1)}{4m}\right]^n 8^{n-1}}$$
[6]

where:

[9]

$$m = \frac{nk\left(\frac{8v}{D}\right)^{n}}{\tau_{0} + k\left(\frac{8v}{D}\right)^{n}}$$

Czaban (1987) is basing the determination of λ on the non-dimensional criterion $\lambda(Re_{H}, He, \beta)$, where the Reynolds number Re_{H} is determined by the formula:

$$Re_{H} = \frac{8\rho D^{n} v^{2-n}}{k \left(6 + \frac{2}{n}\right)^{n}}$$
[7]

the Hedström number He:

$$He = \frac{\tau_0}{\rho V^2} Re_H^2$$
 [8]

and the parameter β equals: $\beta = 8 \frac{He}{Re_{H}^{2}}$ [9]

The Darcy friction factor of the pipeline is calculated with use of the formula:

сwв-3/2015 155

Autorzy niniejszej pracy przeprowadzili obliczenia współczynnika oporu rurociągu λ w strefie laminarnego przepływu zaczynów cementowych o różnym współczynniku W/C, przyjmując średnicę rurociągi D = 0,03 m, metodą podaną przez wyżej wymienionych autorów. Wyniki obliczeń zestawiono w tablicy 4. Na rysunku 6 przedstawiono, przykładowo dla zaczynu cementowego W/C = 0,45, zmiany zależności liczb Reynoldsa od średniej prędkości przepływu w przewodzie, uzyskane na podstawie obliczeń zgodnych z proponowaną metodą.

Otrzymane wykresy Re(v) pozwalają, po wprowadzeniu wartości krytycznej liczby Reynoldsa Re_{cr} = 2931 (tablica 5), na ocenę prędkości krytycznej v_{cr} . Prędkość krytyczna zmienia się od wartości 8,62 m/s (Czaban), do wartości 12,57 m/s (Eckstädt). Przyjmując właściwie określoną liczbę Reynoldsa jako liczbę uogólnioną Re,gen, prędkość krytyczna wynosi v_{cr} = 9,02 m/s (Kempiński), v_{cr} = 9,04 m/s (Madlener). Stosując metodę podaną przez Czabana zawężamy zakres prędkości dopuszczalnych przepływu, natomiast wg Eckstädt znacznie wydłużamy przedział prędkości dopuszczalnych, przez co ruch po przekroczeniu prędkości krytycznej odbywa się w strefie turbulentnego przepływu.

5. Krytyczna liczba Reynoldsa Re_{H.cr}

Podstawowym parametrem pozwalającym na określenie rodzaju przepływu w rurociągu jest krytyczna liczba Reynoldsa Re_{H,cr}, rozgraniczająca warunki laminarnego i turbulentnego ruchu transportowanej mieszaniny. Znajomość Re_{H,cr} umożliwia obliczenie krytycznej prędkości przepływu v_{cr} , ograniczającej dopuszczalny zakres przedziału prędkości eksploatacyjnych.

Ryan i Johnson (1959) analizując zmienność funkcji określającej liczbę stateczności ZR podali podstawy teoretyczne wyznaczenia krytycznej liczby Reynoldsa Re_{cr}. Wykorzystując powyższą metodę Czaban (1987) określił dla modelu Herschela–Bulkley'a wzór [14] na uogólnioną krytyczną liczbę Reynoldsa Re_{H,cr}, przyjmując że dla cieczy newtonowskich wartość ta wynosi 2300.

$$Re_{H,c}^{\frac{2}{n}} = \frac{110,64(8)^{\frac{4}{n}}n(2+n)^{\frac{2+n}{1+n}}}{\lambda^{\frac{2}{n}-1}\left(1-\frac{\tau_0}{\tau_w}\right)^{\frac{2}{n}+1}(3n+1)^2}$$
[14]

Kempiński (2001) podał metodę postępowania przy określaniu krytycznej liczby Reynoldsa Re_{H.cr.} wykorzystując zgodność określenia liczb Reynoldsa dla momentu przejścia przepływu z laminarnego [5] do turbulentnego [14].

Obliczone krytyczne liczby Reynoldsa $Re_{H,cr}$ oraz prędkość krytyczną v_{cr} zestawiono w tablicy 5.

Zmiany krytycznej liczby Reynoldsa Re_{H,cr} w zależności od wskaźnika W/C przedstawiono na rysunku 7. Widać wyraźny wzrost krytycznej liczby Reynoldsa Re_{cr} ze wzrostem W/C. Na rysunku 8 pokazano zależność między prędkością krytyczną v_{cr} a wskaźnikiem W/C. Prędkość krytyczna v_{cr} maleje wyraźnie wraz

$$\lambda = \frac{64}{Re_{H}} \frac{1}{\left(1 - \frac{\beta}{\lambda}\right)^{n+1}} \frac{1}{\left[1 + \frac{2n}{1+2n}\frac{\beta}{\lambda} + \frac{2n^{2}}{(1+n)(1+2n)}\left(\frac{\beta}{\lambda}\right)^{2}\right]^{n}}$$
[10]

Eckstädt (1984) on the other hand bases the determination of λ on the non-dimensional criterion λ (Re_n, A), where the Reynolds number Re_n is determined by the formula:

$$Re_n = \frac{v^{2-n}D^n}{k}\rho$$
 [11]

and the parameter A equals:

$$A = \frac{\tau_0}{v^2 \rho}$$
[12]

The calculation of the λ coefficient is enabled by the formula:

$$\frac{1}{\left(\frac{\lambda Re_{n}}{8} - Re_{n}A\right)^{1/n}} = \frac{1}{\left(\frac{\lambda Re_{n}}{8} - Re_{n}A\right)^{1/n}} = \frac{1}{\left(\frac{n}{6n+2} - \frac{2n}{(3n+1)(2n+1)}2\frac{A}{\lambda} - \frac{16n^{2}}{(3n+1)(2n+1)(n+1)}4\left(\frac{A}{\lambda}\right)^{2} - \frac{64n^{3}}{(3n+1)(2n+1)(n+1)}8\left(\frac{A}{\lambda}\right)^{3}}$$
[13]

The authors of this study calculated the Darcy friction factor of the pipeline λ in the laminar zone of flow of cement pastes characterised by various water to cement ratios W/C basing on an adopted pipeline diameter D = 0.03 m, according to the methodology presented by the aforementioned authors. The results of calculations are listed in Table 4. Figure 6 presents an example of the graphic image of the relation between the Reynolds numbers and the mean velocity of flow in the pipe for cement paste of water to cement ratio W/C=0.45, obtained as a result of the calculations with use of the proposed method.

The obtained diagrams of Re(v) enable, after the introduction of the value of the critical Reynolds number Re_{cr} =2931 (Table 5) to the diagram, to evaluate the critical v_{cr} . The critical velocity varies from 8.62 m/s (Czaban) to 12.57 m/s (Eckstädt). When the correctly calculated Reynolds number is adopted as the generalized Reynolds number Re.gen, the values of critical velocity equal v_{cr} = 9.02 m/s (Kempiński), v_{cr} = 9.04 m/s (Madlener). The application of the method proposed by Czaban narrows the range of acceptable velocities of flow, whereas the approach of Eckstädt significantly extends the range of acceptable velocities, so that, as a result, after the acceptable velocity is exceeded, the movement takes place in the turbulent zone of flow.

5. Critical Reynolds number Re_{H.cr}

The basic parameter allowing to determine the type of flow in the pipeline is the critical Reynolds number $Re_{H,cr}$, determining the limit

Rys. 6. Zależność liczby Reynoldsa Re od średniej prędkości w przewodzie, obliczona dla zaczynu cementowego o W/C = 0,45 metodami podanymi przez różnych autorów

Fig. 6. The relation between the Reynolds number Re and the mean velocity in the pipe, calculated for cement paste with the ratio W/C = 0.45, using the methods presented by various authors

ze wzrostem współczynnika wodno-cementowego W/C. Natomiast na rysunku 9 podano zależność między krytyczną liczbą Reynoldsa $Re_{H,cr}$ a stosunkiem τ_0/τ_w .

Krytyczna liczbą Reynoldsa $Re_{H,cr}$ rośnie wraz ze wzrostem τ_0/τ_w . Aproksymacja zależności $Re_{cr}(\tau_0/\tau_w)$ do wartości $\tau_0/\tau_w = 0$, pozwala na określenie krytycznej liczby Reynoldsa dla cieczy newtonowskiej, która w tym przypadku wynosi $Re_{cr} = 2200$.

6. Podsumowanie i wnioski

Jedną z nowoczesnych metod napraw wielu konstrukcji budowlanych jest ciśnieniowa iniekcja zawiesin materiałów mineralnych utworzonych na bazie cementu. Wymaga to nie tylko pełnej znajomości właściwości fizycznych, chemicznych i reologicznych mieszaniny iniekcyjnej, ale również charakterystyki hydraulicznej instalacji wykorzystywanej do jej wtryskiwania. Przeprowadzone badania zaczynów z cementu CEM I 42,5 R przy różnych wartościach stosunku wodno-cementowego W/C, pozwoliły na przedstawienie następujących wniosków:

- zaczyny cementowe zachowują się jak mieszaniny lepkoplastycze o zmiennej lepkości plastycznej,
- opis właściwości reologicznych wymaga zastosowania trójparametrowego, uogólnionego modelu reologicznego, na przykład modelu Herschela-Bulkley'a,
- występuje korelacja pomiędzy parametrami reologicznymi a konsystencją mieszaniny, określoną stosunkiem wodnocementowym W/C,
- do określenia współczynnika oporu rurociągu λ, niezbędnego do obliczenia strat ciśnienia wzdłuż długości przewodu, można

between laminar and turbulent flow of the transported mixture. The determination of $\text{Re}_{H,cr}$ enables the calculation of the critical velocity of flow v_{cr} , limiting the acceptable range of operational velocities.

Ryan and Johnson (1959), analysing the variability of the function determining the stability number ZR presented the theoretical basis for the determination of the critical Reynolds number Re_{cr} . Using the above described method, Czaban (1987) determined the formula [14] for the generalized critical Reynolds number $Re_{H,cr}$ for the Herschel-Bulkley model basing on the assumption that for Newtonian fluids this value equals 2300.

$$Re_{\mathcal{H},c}^{\frac{2}{n}} = \frac{110,64(8)^{\frac{4}{n}}n(2+n)^{\frac{2+n}{1+n}}}{\lambda^{\frac{2}{n}-1}\left(1-\frac{\tau_0}{\tau_w}\right)^{\frac{2}{n}+1}(3n+1)^2}$$
[14]

Kempiński (2001) presented a methodology of procedure for the determination of critical Reynolds number $Re_{H,cr}$, basing on the compatibility of the determination of the Reynolds numbers for the moment of transition of flow from laminar [5] to turbulent flow [14].

The calculations of the critical Reynolds number $Re_{H,cr}$ and of the critical velocity v_{cr} are listed in Table 5.

Changes in the critical Reynolds number $Re_{H.cr}$, depending on the water to cement ratio W/C, are presented in Fig. 7. An increase in the critical Reynolds number along with the increase in the water to cement ratio W/C is clearly visible. Figure 8 presents the relation between the critical velocity v_{cr} and the water to cement ratio W/C. Critical velocity v_{cr} noticeably decreases along with the increase in the water to cement ratio W/C. On the other hand, Fig.

Tablica 4 / Table 4

WYNIKI OBLICZEŃ LICZBY REYNOLDSA RE ORAZ WSPÓŁCZYNNIKA STRAT LINIOWYCH λ

RESULTS OF THE CALCULATIONS OF REYNOLDS NUMBER Re AND THE DARCY FRICTION FACTOR λ

v	Kem	piński	Madlen	er et al.	Czaban		Eckstädt	
m/s	Re _{H gen}	λ	Re _{H.gen}	λ	Re _H	λ	Ren	λ
W/C = 0.36								
1.0	87.2	0.7335	88.2	0.7254	127.6	0.7335	80.1	0.7339
2.0	238.2	0.2686	240.2	0.2664	304.2	0.2686	190.9	0.2688
4.0	622.3	0.1028	625.9	0.1023	725.2	0.1028	454.0	0.1029
6.0	1074	0.0596	1079	0.0593	1206	0.0596	756.4	0.0596
8.0	1574	0.0407	1579	0.0405	1729	0.0407	1085	0.0407
10.0	2111	0.0303	2117	0.0302	2287	0.0303	1435	0.0303
12.0	2679	0.0239	2686	0.0234	2874	0.0239	1803	0.0239
				W/C = 0.40				
1.0	107.1	0.5976	108.0	0.5924	146.3	0.5976	84.3	0.5979
2.0	293.8	0.2179	295.7	0.2164	360.3	0.2179	207.4	0.2180
4.0	778.3	0.0822	781.7	0.0819	886.9	0.0822	510.6	0.0823
6.0	1359	0.0471	1364	0.0469	1502	0.0471	865	0.0471
8.0	2010	0.0318	2016	0.0317	2183	0.0318	1257	0.0318
10.0	2718	0.0235	2725	0.0235	2918	0.0236	1680	0.0236
				W/C = 0.45				
1.0	148.1	0.4323	149.4	0.4284	194.9	0.4323	121.1	0.4325
2.0	392.0	0.1633	394.4	0.1623	466.4	0.1633	289.8	0.1634
4.0	1002	0.0639	1006	0.0636	1116	0.0639	693.5	0.0639
6.0	1715	0.0373	1718	0.0572	1859	0.0373	1155	0.0373
8.0	2500	0.0256	2506	0.0255	2670	0.0256	1659	0.0256
				W/C = 0.50				
1.0	230.2	0.2780	231.7	0.2763	295.3	0.2780	149.5	0.2781
2.0	644.6	0.0993	647.6	0.0988	762.6	0.0993	386.1	0.0993
3.0	1163	0.0550	1168	0.0548	1328	0.0550	672.5	0.0550
4.0	1761	0.0363	1767	0.0362	1969	0.0363	997.0	0.0364
5.0	2424	0.0264	2431	0.0263	2673	0.0264	1353	0.0264
6.0	3142	0.0204	3150	0.0203	3430	0.0204	1737	0.0204
	1	1		W/C = 0.55	1	1	r	
0.5	122.6	0.5221	123.9	0.5167	183.2	0.5221	108.1	0.5224
1.0	343.0	0.1866	345.8	0.1851	447.0	0.1866	263.6	0.1867
2.0	920.0	0.0696	925.3	0.0692	1091	0.0696	643.2	0.0696
3.0	1613	0.0397	1621	0.0395	1838	0.0397	1084	0.0397
4.0	2390	0.0268	2399	0.0267	2661	0.0268	1569	0.0268
5.0	3234	0.0198	3244	0.0197	3546	0.0198	2091	0.0198
	W/C = 0.60							
0.5	167.0	0.3833	168.5	0.3799	244.9	0.3833	133.7	0.3835
1.0	475.2	0.1347	478.6	0.1337	615.1	0.1347	355.7	0.1347
2.0	1303	0.0491	1310	0.0489	1545	0.0491	843.1	0.0491
3.0	2320	0.0267	2329	0.0275	2647	0.0276	1445	0.0276
4.0	3475	0.0184	3487	0.0184	3880	0.0184	2117	0.0184

wykorzystać analizowane metody ich obliczania. Wszystkie przedstawione metody dają praktycznie takie same wartości współczynnika λ ,

- metody umożliwiające określanie uogólnionej liczby Reynoldsa *Re_{gen}* (Kempiński, 2001, Madlener i inni, 2009) pozwalają, po- przez porównanie z krytyczną liczbą Reynoldsa *Re_{cr}*, na ocenę występującej strefy przepływu (*Re_{gen} < Re_{cr}* – ruch laminarny, *Re_{gen} > Re_{cr}* – ruch turbulentny),
- znajomość wartości krytycznej liczby Reynoldsa Re_{cr} umożliwia obliczenie prędkości krytycznej v_{cr} rozgraniczającej laminarny i turbulentny przepływ badanej mieszaniny i określenie zakresu prędkości dopuszczalnej dla przepływu laminarnego,

9 shows the relation between the critical Reynolds number $Re_{H.cr}$ and the relation τ_0/τ_w .

The critical Reynolds umber $Re_{H,cr}$ increases along with the increase in τ_0/τ_w . The approximation of the relation $Re_{cr}(\tau_0/\tau_w)$ to the value of $\tau_0/\tau_w = 0$ enables the determination of the critical Reynolds number for Newtonian fluid, which, in this case, equals $Re_{cr} = 2200$.

6. Summary and conclusions

One of the modern methods of repairing numerous civil structures consists in the pressurized injection of liquid mineral materials prepared of cement. This requires not only the knowledge of physical,

Rys. 7. Zależność między krytyczną liczbą Reynoldsa $\mathrm{Re}_{\mathrm{cr}}$ a wskaźnikiem wodno-cementowym W/C

Fig. 7. Relation between the critical Reynolds number Re_{cr} and the water to cement ratio W/C

Rys. 8. Zależność między prędkością krytyczną $v_{\rm cr}$ a wskaźnikiem wodno-cementowym W/C

Fig. 8. Relation between the critical velocity $v_{\rm cr}\,$ and the water to cement ratio W/C

- metoda określania współczynnika λ przedstawiona przez Madlenera (2001) nie wymaga przeprowadzania obliczeń iteracyjnych, jak to ma miejsce w przypadku pozostałych metod,
- znajomość naprężenia stycznego na ścianie rurociągu τ_w, określona w metodzie zaproponowanej przez Kempińskiego (2001), pozwala na szerszą analizę charakterystyki przepływu, poprzez możliwość oceny zmienności naprężeń stycznych w przewodzie rurowym, jak również określenie podziału przepływu na rdzeniowy (r < r₀) oraz poza rdzeniem, ulegający ścinaniu.

chemical and rheological parameters of the injection mixture, but also of the characteristics of the hydraulic installation for carrying out the injection. The research of cement pastes prepared on the basis of cement CEM I 42.5 R at various water to cement ratios W/C allowed us to present the following conclusions:

 cement pastes behave like viscoplastic mixtures of varied plastic viscosity,

Fig. 9. Relation between the critical Reynolds number $Re_{H,cr}$ and the relation between the yield stress and the shear stress on the surface of the pipe τ_0/τ_w

Tablica 5 / Table 5

WARTOŚCI KRYTYCZNEJ LICZBY REYNOLDSA Re_{cr}, STOSUNKU PROGU PŁYNIĘCIA DO NAPRĘŻEŃ NA ŚCIANIE PRZEWODU τ_0/τ_w ORAZ PRĘDKOŚCI KRYTYCZNEJ v_{cr} OBLICZONE METODAMI POSZCZEGÓLNYCH AUTORÓW

VALUES OF THE CRITICAL REYNOLDS NUMBER Re_{cr.} THE RELATION BETWEEN THE YIELD STRESS AND THE SHEAR STRESS ON THE SUR-FACE OF THE PIPE τ_0/τ_w AND CRITICAL VELOCITY $v_{cr.}$ CALCULATED ACCORDING TO THE METHODS PRESENTED BY INDIVIDUAL AUTHORS

Water to cement ratio W/C		$ au_{ m o}/ au_{ m w}$	v _{cr,} m/s			
			Kempiński	Madlener et al.	Czaban	Eckstädt
0.36	2974	0.0495	13.00	12.98	12.33	17.89
0.40	3057	0.0503	10.89	10.98	10.36	15.85
0.45	2931	0.0452	9.04	9.02	8.62	12.57
0.50	3350	0.0641	6.28	6.27	5.90	9.70
0.55	3254	0.0680	5.03	5.01	4.68	7.05
0.60	3520	0.0809	4.04	4.03	3.72	5.86

Literatura / References

1. J. Bensted, R. Smith, Cementy wiertnicze. Część 9: Zagadnienia reologii w cementowaniu otworów wiertniczych. Cement Wapno Beton, **78**, 2, 92-100 (2011).

2. S. Czaban, Wyznaczanie parametrów hydrotransportu rurowego reostabilnych mieszanin dwufazowych. Nr 60, seria Rozprawy, Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, Wrocław 1987.

3. H. Eckstädt, Druckrohrströmung von Rinder Und Schweinegülle, dissertation, Universität Rostock 1984.

4. G. W. Govier, K. Aziz, The flow of Complex Mixtures in Pipes, Van Nostrand Reinhold Company 1972.

5. J. Kempiński, Flow characteristic of homogeneous mixture in laminar flow zone. Archives of Hydro-Engineering and Environmental Mechanics, Instytut Budownictwa Wodnego PAN, Gdańsk, **48**, 4, 57-68 (2001).

 J. Kempiński, R. Świerzko, Rheological foundations of the hydraulic transport of cement pastes. Monografie CVIII, seria Współczesne problemy budownictwa, nr. I, Uniwersytet Przyrodniczy we Wrocławiu 2010.

- the description of rheological properties requires the application of the tri-parametric, generalized rheological model, such as the Herschel-Bulkley model,
- there is the correlation between the rheological parameters and the consistency of the mixture, presented in form of the water to cement ratio W/C,
- fully analysed methods of calculation may be applied for the purposes of determination of the Darcy friction factor λ that is necessary for the calculation of the head loss on the length of the pipeline. All presented methods result in practically identical values of the λ factor,
- methods which allow, by comparison with the critical Reynold's number Re_{cr}, determination of the generalised Reynold's number (Kempiński, 2001, Madlener et al., 2009) and evaluation of the valid flow zone (*Re_{gen} < Re_{cr}* laminar flow, *Re_{gen} > Re_{cr}* turbulent flow),

7. 7. W. Kilian, Ocena wpływu temperatury czasu i koncentracji na cechy reologiczne płynnych zaczynów cementowych, Uniwersytet Przyrodniczy we Wrocławiu, Wrocław 2008.

8. 8. I. M. Krieger, H. Elrod, Direct determination of the flow curves of nonnewtonian fluids. II. Shearing rate in the concentric cylinder viscometer. Journal of Applied Physics, **24**, 134-136 (1953).

9. 9. I. M. Krieger, S. H. Maron, Direct determination of the flow curves of non-newtonian fluids. Journal of Applied Physics, **23**, 147-149 (1953).

10. 10. I. M. Krieger, S. H. Maron, Direct determination of the flow curves of non-newtonian fluids. III. Standarized treatment of viscometric data, Journal of Applied Physics, **25**, 72-75 (1953).

11. 11. M. Król, J. Szerafin, Reologia w procesie iniekcji zaczynami cementowymi, Monografia, Reologia w technologii betonu, Gliwice 2009.

12. 12. K. Madlener, B. Frey, H. K. Ciezki: Progress in Propulsion Physics, 1, 237-250 (2009).

13. 13. PN-EN 197-1:2002. Cement. Część 1. Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku.

14. 14. N. W. Ryan, M. W. Johnson, Transition from laminar to turbulent flow in pipes. AIChE Journal, 5 (1959).

15. 15. S. Stryczek, R. Wiśniowski, A. Gonet, A. Złotowski, Wpływ rodzaju cementu na właściwości reologiczne zaczynów uszczelniających stosowanych w technologiach wiertniczych. Wiertnictwo Nafta Gaz, **27**, 4, 721-739 (2010).

- the knowledge of the critical Reynolds number Re_{cr} enables the calculation of the critical velocity v_{cr} constituting a limit between the laminar and turbulent flow of the given mixture and the determination of the range of acceptable velocities for laminar flow,
- the method of determination of the λ factor presented by Madlener (2001) does not require to carry out iterative calculations, as it is in the case of the other methods,
- the knowledge of the tangent shear stress on the surface of the pipe τ_{w} , determined with the method proposed by Kempiński (2001) enables a wider analysis of the flow characteristics, by means of enabling the evaluation of the changeability of tangent stresses in the pipeline as well as the determination of the division of flow into core (r < r₀) and outside the core, being subject to shearing.